
    ܛ7i&                     X   d Z ddlZddlmZ g dZ ed      ej                  d               Z ed      ej                  dd              Z ed      ej                  d               Z	 ed      ej                  d	               Z
 ed       ej                  d
      dd              Zy)zStrongly connected components.    N)not_implemented_for)$number_strongly_connected_componentsstrongly_connected_componentsis_strongly_connected&kosaraju_strongly_connected_componentscondensation
undirectedc              #     K   i }i }t               }g }d}| D ci c]  }|t        | j                  |          }}| D ],  }||vs	|g}	|	s|	d   }||vr
|dz   }|||<   d}
||   D ]  }||vs|	j                  |       d}
 n |
r||   ||<   | j                  |   D ]?  }||vs||   ||   kD  rt	        ||   ||   g      ||<   *t	        ||   ||   g      ||<   A |	j                          ||   ||   k(  r[|h}|r@||d      ||   kD  r2|j                         }|j                  |       |r||d      ||   kD  r2|j                  |       | n|j                  |       |	r/ yc c}w w)a  Generate nodes in strongly connected components of graph.

    Parameters
    ----------
    G : NetworkX Graph
        A directed graph.

    Returns
    -------
    comp : generator of sets
        A generator of sets of nodes, one for each strongly connected
        component of G.

    Raises
    ------
    NetworkXNotImplemented
        If G is undirected.

    Examples
    --------
    Generate a sorted list of strongly connected components, largest first.

    >>> G = nx.cycle_graph(4, create_using=nx.DiGraph())
    >>> nx.add_cycle(G, [10, 11, 12])
    >>> [
    ...     len(c)
    ...     for c in sorted(nx.strongly_connected_components(G), key=len, reverse=True)
    ... ]
    [4, 3]

    If you only want the largest component, it's more efficient to
    use max instead of sort.

    >>> largest = max(nx.strongly_connected_components(G), key=len)

    See Also
    --------
    connected_components
    weakly_connected_components
    kosaraju_strongly_connected_components

    Notes
    -----
    Uses Tarjan's algorithm[1]_ with Nuutila's modifications[2]_.
    Nonrecursive version of algorithm.

    References
    ----------
    .. [1] Depth-first search and linear graph algorithms, R. Tarjan
       SIAM Journal of Computing 1(2):146-160, (1972).

    .. [2] On finding the strongly connected components in a directed graph.
       E. Nuutila and E. Soisalon-Soinen
       Information Processing Letters 49(1): 9-14, (1994)..

    r      TFN)setiter_adjappendminpopaddupdate)Gpreorderlowlink	scc_found	scc_queueiv	neighborssourcequeuedonewsccks                 n/home/rose/Desktop/poly/venv/lib/python3.12/site-packages/networkx/algorithms/components/strongly_connected.pyr   r      s    v HGII	A-./QDO#QI/"HE"IH$AA"#HQK"1A(Q$	 &
 !)!GAJVVAYI-'{Xa[8-0'!*gaj1I-J
-0'!*hqk1J-K
 ' IIKqzXa[0 c'HYr],Chqk,Q )AGGAJ (HYr],Chqk,Q "((-!	!((+9   0s4   E3 E.E3E3!E3.6E3%BE3?)E3*	E3c              #   8  K   t        t        j                  | j                  d      |            }t	        |      }t               }|rt	        |      |k  r|j                         }||v r%|h}|j                  |       |g}|r{t	        |      |k  rm|j                         }| j                  |   D ]:  }	|	|vs|j                  |	       |j                  |	       |j                  |	       < |rt	        |      |k  rm| |rt	        |      |k  ryyyyw)a  Generate nodes in strongly connected components of graph.

    Parameters
    ----------
    G : NetworkX Graph
        A directed graph.

    source : node, optional (default=None)
        Specify a node from which to start the depth-first search.
        If not provided, the algorithm will start from an arbitrary node.

    Yields
    ------
    set
        A set of all nodes in a strongly connected component of `G`.

    Raises
    ------
    NetworkXNotImplemented
        If `G` is undirected.

    NetworkXError
        If `source` is not a node in `G`.

    Examples
    --------
    Generate a list of strongly connected components of a graph:

    >>> G = nx.cycle_graph(4, create_using=nx.DiGraph())
    >>> nx.add_cycle(G, [10, 11, 12])
    >>> sorted(nx.kosaraju_strongly_connected_components(G), key=len, reverse=True)
    [{0, 1, 2, 3}, {10, 11, 12}]

    If you only want the largest component, it's more efficient to
    use `max()` instead of `sorted()`.

    >>> max(nx.kosaraju_strongly_connected_components(G), key=len)
    {0, 1, 2, 3}

    See Also
    --------
    strongly_connected_components

    Notes
    -----
    Uses Kosaraju's algorithm.
    F)copy)r   N)
listnxdfs_postorder_nodesreverselenr   r   r   r   r   )
r   r   postnseenrnewstackr   r    s
             r#   r   r   r   s     d &&qyyey'<VLMDD	A5D
3t9q=HHJ9cD	A		AVVAYD=GGAJHHQKLLO	  D	A 	 3t9q=$=$s   B8D;ADDDc                 8    t        d t        |       D              S )a  Returns number of strongly connected components in graph.

    Parameters
    ----------
    G : NetworkX graph
       A directed graph.

    Returns
    -------
    n : integer
       Number of strongly connected components

    Raises
    ------
    NetworkXNotImplemented
        If G is undirected.

    Examples
    --------
    >>> G = nx.DiGraph(
    ...     [(0, 1), (1, 2), (2, 0), (2, 3), (4, 5), (3, 4), (5, 6), (6, 3), (6, 7)]
    ... )
    >>> nx.number_strongly_connected_components(G)
    3

    See Also
    --------
    strongly_connected_components
    number_connected_components
    number_weakly_connected_components

    Notes
    -----
    For directed graphs only.
    c              3       K   | ]  }d   yw)r   N ).0r!   s     r#   	<genexpr>z7number_strongly_connected_components.<locals>.<genexpr>   s     =<Sq<s   )sumr   r   s    r#   r   r      s    L =9!<===    c                     t        |       dk(  rt        j                  d      t        t        t	        |                   t        |       k(  S )aW  Test directed graph for strong connectivity.

    A directed graph is strongly connected if and only if every vertex in
    the graph is reachable from every other vertex.

    Parameters
    ----------
    G : NetworkX Graph
       A directed graph.

    Returns
    -------
    connected : bool
      True if the graph is strongly connected, False otherwise.

    Examples
    --------
    >>> G = nx.DiGraph([(0, 1), (1, 2), (2, 3), (3, 0), (2, 4), (4, 2)])
    >>> nx.is_strongly_connected(G)
    True
    >>> G.remove_edge(2, 3)
    >>> nx.is_strongly_connected(G)
    False

    Raises
    ------
    NetworkXNotImplemented
        If G is undirected.

    See Also
    --------
    is_weakly_connected
    is_semiconnected
    is_connected
    is_biconnected
    strongly_connected_components

    Notes
    -----
    For directed graphs only.
    r   z-Connectivity is undefined for the null graph.)r*   r'   NetworkXPointlessConceptnextr   r7   s    r#   r   r      sG    X 1v{))?
 	
 t1!456#a&@@r8   T)returns_graphc                    |t        j                  |       }i i }t        j                         }|j                  d<   t	        |       dk(  r|S t        |      D ]$  \  }||<   j                  fd|D               & dz   }|j                  t        |             |j                  fd| j                         D               t        j                  ||d       |S )a  Returns the condensation of G.

    The condensation of G is the graph with each of the strongly connected
    components contracted into a single node.

    Parameters
    ----------
    G : NetworkX DiGraph
       A directed graph.

    scc:  list or generator (optional, default=None)
       Strongly connected components. If provided, the elements in
       `scc` must partition the nodes in `G`. If not provided, it will be
       calculated as scc=nx.strongly_connected_components(G).

    Returns
    -------
    C : NetworkX DiGraph
       The condensation graph C of G.  The node labels are integers
       corresponding to the index of the component in the list of
       strongly connected components of G.  C has a graph attribute named
       'mapping' with a dictionary mapping the original nodes to the
       nodes in C to which they belong.  Each node in C also has a node
       attribute 'members' with the set of original nodes in G that
       form the SCC that the node in C represents.

    Raises
    ------
    NetworkXNotImplemented
        If G is undirected.

    Examples
    --------
    Contracting two sets of strongly connected nodes into two distinct SCC
    using the barbell graph.

    >>> G = nx.barbell_graph(4, 0)
    >>> G.remove_edge(3, 4)
    >>> G = nx.DiGraph(G)
    >>> H = nx.condensation(G)
    >>> H.nodes.data()
    NodeDataView({0: {'members': {0, 1, 2, 3}}, 1: {'members': {4, 5, 6, 7}}})
    >>> H.graph["mapping"]
    {0: 0, 1: 0, 2: 0, 3: 0, 4: 1, 5: 1, 6: 1, 7: 1}

    Contracting a complete graph into one single SCC.

    >>> G = nx.complete_graph(7, create_using=nx.DiGraph)
    >>> H = nx.condensation(G)
    >>> H.nodes
    NodeView((0,))
    >>> H.nodes.data()
    NodeDataView({0: {'members': {0, 1, 2, 3, 4, 5, 6}}})

    Notes
    -----
    After contracting all strongly connected components to a single node,
    the resulting graph is a directed acyclic graph.

    mappingr   c              3   &   K   | ]  }|f 
 y wNr3   )r4   r,   r   s     r#   r5   zcondensation.<locals>.<genexpr>_  s     1y!1vys   r   c              3   P   K   | ]  \  }}|   |   k7  s|   |   f  y wr@   r3   )r4   ur   r>   s      r#   r5   zcondensation.<locals>.<genexpr>b  s6      -6TQ'!*PQ
:RWQZ Ys   &&members)r'   r   DiGraphgraphr*   	enumerater   add_nodes_fromrangeadd_edges_fromedgesset_node_attributes)r   r!   rC   C	componentnumber_of_componentsr   r>   s         @@r#   r   r     s    ~ {..q1GG


A AGGI
1v{!#9
1y11 ' q5U/01 -.WWY  1gy1Hr8   r@   )__doc__networkxr'   networkx.utils.decoratorsr   __all___dispatchabler   r   r   r   r   r3   r8   r#   <module>rT      s    $  9 \"^,  #^,B \"A  #AH \"$>  #$>N \"/A  #/Ad \"%P & #Pr8   