
    ޛ7iu                        d Z ddlZddlZddlmZmZmZmZm	Z	 ddl
mZ ddlmZmZmZ ddlmZ ddlmZ dd	lmZ dd
lmZ ddlmZ ddlmZ ddlmZ g dZ eddd      d        Z edd      d        Z e Z!d Z"d Z# edd      dd       Z$d dZ% edddddd      d        Z&d dZ' edddddd      d        Z(d!dZ)y)"zMatrix equation solver routines    N)invLinAlgErrornormcondsvd)_apply_over_batch   )solvesolve_triangularmatrix_balance)get_lapack_funcs)schur)lu)qr)ordqz)_asarray_validated)
block_diag)solve_sylvestersolve_continuous_lyapunovsolve_discrete_lyapunovsolve_lyapunovsolve_continuous_aresolve_discrete_are)a   )br   )qr   c                 \   | j                   dk(  s|j                   dk(  rt        j                  t        j                  t        j                  t        j
                  d}t        d| ||f      \  }t        j                  |j                  ||j                           S t        | d      \  }}t        |j                         j                         d      \  }}t        j                  t        j                  |j                         j                         |      |      }	t        d|||	f      \  }
|
t        d       |
|||	d	
      \  }}}||z  }|dk  rt        d|  d      t        j                  t        j                  ||      |j                         j                               S )a  
    Computes a solution (X) to the Sylvester equation :math:`AX + XB = Q`.

    Parameters
    ----------
    a : (M, M) array_like
        Leading matrix of the Sylvester equation
    b : (N, N) array_like
        Trailing matrix of the Sylvester equation
    q : (M, N) array_like
        Right-hand side

    Returns
    -------
    x : (M, N) ndarray
        The solution to the Sylvester equation.

    Raises
    ------
    LinAlgError
        If solution was not found

    Notes
    -----
    Computes a solution to the Sylvester matrix equation via the Bartels-
    Stewart algorithm. The A and B matrices first undergo Schur
    decompositions. The resulting matrices are used to construct an
    alternative Sylvester equation (``RY + YS^T = F``) where the R and S
    matrices are in quasi-triangular form (or, when R, S or F are complex,
    triangular form). The simplified equation is then solved using
    ``*TRSYL`` from LAPACK directly.

    .. versionadded:: 0.11.0

    Examples
    --------
    Given `a`, `b`, and `q` solve for `x`:

    >>> import numpy as np
    >>> from scipy import linalg
    >>> a = np.array([[-3, -2, 0], [-1, -1, 3], [3, -5, -1]])
    >>> b = np.array([[1]])
    >>> q = np.array([[1],[2],[3]])
    >>> x = linalg.solve_sylvester(a, b, q)
    >>> x
    array([[ 0.0625],
           [-0.5625],
           [ 0.6875]])
    >>> np.allclose(a.dot(x) + x.dot(b), q)
    True

    r   sdcztrsylarraysdtyperealoutputzQLAPACK implementation does not contain a proper Sylvester equation solver (TRSYL)Ctranbz!Illegal value encountered in the z term)sizenpfloat32float64	complex64
complex128r   emptyshapetypecoder   conj	transposedotRuntimeErrorr   )r   r   r   tdictfuncrur    vfr%   yscaleinfos                 R/home/rose/Desktop/poly/venv/lib/python3.12/site-packages/scipy/linalg/_solvers.pyr   r      sb   n 	vv{affkjjrzzll8 Q1I>xxuT]]';<< 6"DAq ##%f5DAq 	rvvaffh((*A.2A j1a)4FE} ? @ 	@1a#.NAudaAax=teWEJKK66"&&A, 2 2 455    c                 v   t        j                  t        | d            } t        j                  t        |d            }t        }t	        | |f      D ]N  \  }}t        j
                  |      rt        }t        j                  |j                   r>t        dd|    d       | j                  |j                  k7  rt        d      | j                  dk(  r~t         j                  t         j                  t         j                  t         j                  d}t        d	| |f
      \  }t        j                   | j                  ||j"                           S t%        | d      \  }}|j'                         j(                  j+                  |j+                  |            }	t        d||	f      }
|t        u rdnd} |
|||	|      \  }}}|dk  rt        d|  d      |dk(  rt-        j.                  dt0        d       ||z  }|j+                  |      j+                  |j'                         j(                        S )a  
    Solves the continuous Lyapunov equation :math:`AX + XA^H = Q`.

    Uses the Bartels-Stewart algorithm to find :math:`X`.

    Parameters
    ----------
    a : array_like
        A square matrix

    q : array_like
        Right-hand side square matrix

    Returns
    -------
    x : ndarray
        Solution to the continuous Lyapunov equation

    See Also
    --------
    solve_discrete_lyapunov : computes the solution to the discrete-time
        Lyapunov equation
    solve_sylvester : computes the solution to the Sylvester equation

    Notes
    -----
    The continuous Lyapunov equation is a special form of the Sylvester
    equation, hence this solver relies on LAPACK routine ?TRSYL.

    .. versionadded:: 0.11.0

    Examples
    --------
    Given `a` and `q` solve for `x`:

    >>> import numpy as np
    >>> from scipy import linalg
    >>> a = np.array([[-3, -2, 0], [-1, -1, 0], [0, -5, -1]])
    >>> b = np.array([2, 4, -1])
    >>> q = np.eye(3)
    >>> x = linalg.solve_continuous_lyapunov(a, q)
    >>> x
    array([[ -0.75  ,   0.875 ,  -3.75  ],
           [  0.875 ,  -1.375 ,   5.3125],
           [ -3.75  ,   5.3125, -27.0625]])
    >>> np.allclose(a.dot(x) + x.dot(a.T), q)
    True
    Tcheck_finiteMatrix aq should be square.*Matrix a and q should have the same shape.r   r   r$   r&   r(   r*   r+   r%   Tr-   r.   zH?TRSYL exited with the internal error "illegal value in argument number z8.". See LAPACK documentation for the ?TRSYL error codes.r	   zInput "a" has an eigenvalue pair whose sum is very close to or exactly zero. The solution is obtained via perturbing the coefficients.r   )
stacklevel)r1   
atleast_2dr   float	enumerateiscomplexobjcomplexequalr7   
ValueErrorr0   r2   r3   r4   r5   r   r6   r8   r   r9   rO   r;   warningswarnRuntimeWarning)r   r   r_or_cind_r=   r>   r?   r@   rB   r%   dtype_stringrC   rD   rE   s                  rF   r   r   t   s   f 	(>?A
(>?AFQF#Q??1Fxx!wtCyk1CDEE $ 	ww!''EFF 	vv{jjrzzll8 QF;xxuT]]';<< 6"DAq 	


quuQx A Wq!f-E E/3sL1a,7NAudax >?CeW ELL M 	M 
 B %	4 JA558<<

##rG   c                    t        j                  | | j                               }t        j                  |j                  d         |z
  }t        ||j                               }t        j                  ||j                        S )z
    Solves the discrete Lyapunov equation directly.

    This function is called by the `solve_discrete_lyapunov` function with
    `method=direct`. It is not supposed to be called directly.
    r   )r1   kronr9   eyer7   r
   flattenreshape)r   r   lhsxs       rF   _solve_discrete_lyapunov_directrf      s\     ''!QVVX
C
&&1

$Cc199;A::a!!rG   c           	         t        j                  | j                  d         }| j                         j	                         }t        ||z         }t        j                  ||z
  |      }dt        j                  t        j                  t        | |z         |      |      z  }t        |j                         j	                         |       S )z
    Solves the discrete Lyapunov equation using a bilinear transformation.

    This function is called by the `solve_discrete_lyapunov` function with
    `method=bilinear`. It is not supposed to be called directly.
    r   r   )r1   ra   r7   r9   r:   r   r;   r   )r   r   ra   aHaHI_invr   r"   s          rF   !_solve_discrete_lyapunov_bilinearrj      s     &&
C	
			B"s(mG
rCx!A	"&&AGa('
22A!&&(,,.33rG   c                    t        j                  |       } t        j                  |      }|| j                  d   dk\  rd}nd}|j                         }|dk(  rt	        | |      }|S |dk(  rt        | |      }|S t        d|       )a	  
    Solves the discrete Lyapunov equation :math:`AXA^H - X + Q = 0`.

    Parameters
    ----------
    a, q : (M, M) array_like
        Square matrices corresponding to A and Q in the equation
        above respectively. Must have the same shape.

    method : {'direct', 'bilinear'}, optional
        Type of solver.

        If not given, chosen to be ``direct`` if ``M`` is less than 10 and
        ``bilinear`` otherwise.

    Returns
    -------
    x : ndarray
        Solution to the discrete Lyapunov equation

    See Also
    --------
    solve_continuous_lyapunov : computes the solution to the continuous-time
        Lyapunov equation

    Notes
    -----
    This section describes the available solvers that can be selected by the
    'method' parameter. The default method is *direct* if ``M`` is less than 10
    and ``bilinear`` otherwise.

    Method *direct* uses a direct analytical solution to the discrete Lyapunov
    equation. The algorithm is given in, for example, [1]_. However, it requires
    the linear solution of a system with dimension :math:`M^2` so that
    performance degrades rapidly for even moderately sized matrices.

    Method *bilinear* uses a bilinear transformation to convert the discrete
    Lyapunov equation to a continuous Lyapunov equation :math:`(BX+XB'=-C)`
    where :math:`B=(A-I)(A+I)^{-1}` and
    :math:`C=2(A' + I)^{-1} Q (A + I)^{-1}`. The continuous equation can be
    efficiently solved since it is a special case of a Sylvester equation.
    The transformation algorithm is from Popov (1964) as described in [2]_.

    .. versionadded:: 0.11.0

    References
    ----------
    .. [1] "Lyapunov equation", Wikipedia,
       https://en.wikipedia.org/wiki/Lyapunov_equation#Discrete_time
    .. [2] Gajic, Z., and M.T.J. Qureshi. 2008.
       Lyapunov Matrix Equation in System Stability and Control.
       Dover Books on Engineering Series. Dover Publications.

    Examples
    --------
    Given `a` and `q` solve for `x`:

    >>> import numpy as np
    >>> from scipy import linalg
    >>> a = np.array([[0.2, 0.5],[0.7, -0.9]])
    >>> q = np.eye(2)
    >>> x = linalg.solve_discrete_lyapunov(a, q)
    >>> x
    array([[ 0.70872893,  1.43518822],
           [ 1.43518822, -2.4266315 ]])
    >>> np.allclose(a.dot(x).dot(a.T)-x, -q)
    True

    r   
   bilineardirectzUnknown solver )r1   asarrayr7   lowerrf   rj   rW   )r   r   methodmethre   s        rF   r   r      s    N 	

1A


1A~771:FF<<>Dx+Aq1 H 
	-a3 H ?6(344rG   c           	      $    t        | ||||||      S )aZ  
    Solves the continuous-time algebraic Riccati equation (CARE).

    The CARE is defined as

    .. math::

          X A + A^H X - X B R^{-1} B^H X + Q = 0

    The limitations for a solution to exist are :

        * All eigenvalues of :math:`A` on the right half plane, should be
          controllable.

        * The associated hamiltonian pencil (See Notes), should have
          eigenvalues sufficiently away from the imaginary axis.

    Moreover, if ``e`` or ``s`` is not precisely ``None``, then the
    generalized version of CARE

    .. math::

          E^HXA + A^HXE - (E^HXB + S) R^{-1} (B^HXE + S^H) + Q = 0

    is solved. When omitted, ``e`` is assumed to be the identity and ``s``
    is assumed to be the zero matrix with sizes compatible with ``a`` and
    ``b``, respectively.

    The documentation is written assuming array arguments are of specified
    "core" shapes. However, array argument(s) of this function may have additional
    "batch" dimensions prepended to the core shape. In this case, the array is treated
    as a batch of lower-dimensional slices; see :ref:`linalg_batch` for details.

    Parameters
    ----------
    a : (M, M) array_like
        Square matrix
    b : (M, N) array_like
        Input
    q : (M, M) array_like
        Input
    r : (N, N) array_like
        Nonsingular square matrix
    e : (M, M) array_like, optional
        Nonsingular square matrix
    s : (M, N) array_like, optional
        Input
    balanced : bool, optional
        The boolean that indicates whether a balancing step is performed
        on the data. The default is set to True.

    Returns
    -------
    x : (M, M) ndarray
        Solution to the continuous-time algebraic Riccati equation.

    Raises
    ------
    LinAlgError
        For cases where the stable subspace of the pencil could not be
        isolated. See Notes section and the references for details.

    See Also
    --------
    solve_discrete_are : Solves the discrete-time algebraic Riccati equation

    Notes
    -----
    The equation is solved by forming the extended hamiltonian matrix pencil,
    as described in [1]_, :math:`H - \lambda J` given by the block matrices ::

        [ A    0    B ]             [ E   0    0 ]
        [-Q  -A^H  -S ] - \lambda * [ 0  E^H   0 ]
        [ S^H B^H   R ]             [ 0   0    0 ]

    and using a QZ decomposition method.

    In this algorithm, the fail conditions are linked to the symmetry
    of the product :math:`U_2 U_1^{-1}` and condition number of
    :math:`U_1`. Here, :math:`U` is the 2m-by-m matrix that holds the
    eigenvectors spanning the stable subspace with 2-m rows and partitioned
    into two m-row matrices. See [1]_ and [2]_ for more details.

    In order to improve the QZ decomposition accuracy, the pencil goes
    through a balancing step where the sum of absolute values of
    :math:`H` and :math:`J` entries (after removing the diagonal entries of
    the sum) is balanced following the recipe given in [3]_.

    .. versionadded:: 0.11.0

    References
    ----------
    .. [1]  P. van Dooren , "A Generalized Eigenvalue Approach For Solving
       Riccati Equations.", SIAM Journal on Scientific and Statistical
       Computing, Vol.2(2), :doi:`10.1137/0902010`

    .. [2] A.J. Laub, "A Schur Method for Solving Algebraic Riccati
       Equations.", Massachusetts Institute of Technology. Laboratory for
       Information and Decision Systems. LIDS-R ; 859. Available online :
       http://hdl.handle.net/1721.1/1301

    .. [3] P. Benner, "Symplectic Balancing of Hamiltonian Matrices", 2001,
       SIAM J. Sci. Comput., 2001, Vol.22(5), :doi:`10.1137/S1064827500367993`

    Examples
    --------
    Given `a`, `b`, `q`, and `r` solve for `x`:

    >>> import numpy as np
    >>> from scipy import linalg
    >>> a = np.array([[4, 3], [-4.5, -3.5]])
    >>> b = np.array([[1], [-1]])
    >>> q = np.array([[9, 6], [6, 4.]])
    >>> r = 1
    >>> x = linalg.solve_continuous_are(a, b, q, r)
    >>> x
    array([[ 21.72792206,  14.48528137],
           [ 14.48528137,   9.65685425]])
    >>> np.allclose(a.T.dot(x) + x.dot(a)-x.dot(b).dot(b.T).dot(x), -q)
    True

    )_solve_continuous_arer   r   r   r?   er    balanceds          rF   r   r   V  s    x !Aq!Q8<<rG   )r?   r   )rv   r   )r    r   c           
      
   t        | |||||d      \
  } }}}}}}}}	}
t        j                  d|z  |z   d|z  |z   f|	      }| |d |d |f<   d|d ||d|z  f<   ||d |d|z  d f<   | ||d|z  d |f<   | j                         j                   ||d|z  |d|z  f<   |dn| ||d|z  d|z  d f<   |dn|j                         j                  |d|z  d d |f<   |j                         j                  |d|z  d |d|z  f<   ||d|z  d d|z  d f<   |
r=|;t        ||j                         j                  t        j                  ||	            }n7t        t        j                  d|z        t        j                  ||	            }|r t        j                  |      t        j                  |      z   }t        j                  |d       t        |dd      \  }\  }}t        j                  |t        j                  |            st        j                  |      }t        j                  ||d|z   |d | z
  dz        }dt        j                  || |d|z  d  f   z  }|d d d f   t        j                   |      z  }||z  }||z  }t#        |d d | d f         \  }}|d d |d f   j                         j                  j%                  |d d d d|z  f         }|d d|z  |d f   j                         j                  j%                  |d d|z  d d|z  f         }|	t&        u rdnd	}t)        ||d
ddd|      \  }}}}}}|Dt#        t        j*                  |j%                  |d |d |f         ||d d |f   f            \  }}|d |d |f   }||d d |f   }t-        |      \  }}}dt/        |      z  t        j0                  d      k  rt3        d      t5        |j                         j                  t5        |j                         j                  |j                         j                  d      d      j                         j                  j%                  |j                         j                        }|r|d |d f   |d | z  z  }|j                         j                  j%                  |      }t7        |d      }||j                         j                  z
  }t        j8                  t        j0                  d      d|z  g      }t7        |d      |kD  rt3        d      ||j                         j                  z   dz  S )Ncarer   r(           r	   r   separatepermuter*   rU   lhpTFsortoverwrite_aoverwrite_brJ   r,         ?!Failed to find a finite solution.rp   unit_diagonal     @@皙?zQThe associated Hamiltonian pencil has eigenvalues too close to the imaginary axis)_are_validate_argsr1   r6   r9   rO   r   
zeros_likera   absfill_diagonalr   allclose	ones_likelog2roundr_
reciprocalr   r;   rR   r   vstackr   r   spacingr   r   r   max)r   r   r   r?   rv   r    rw   mnr[   gen_areHJMr]   scaelwisescaleout_strr@   u00u10upuluure   u_symn_u_symsym_thresholds                               rF   rt   rt     s7    /A561aAv/O+Aq!Q1aFG 	!A#a%1Qv.AAbqb"1"fIAbqb!AaC%iLAbqb!A#$hK2Aa!eRaRiLvvxzzkAa!eQqsUlO9R1"Aa!eQqSTkN	"qvvxzzAacdBQBhKVVXZZAacdAacEkNAacdAaCDjM1=q!&&(**bmmAV&DErvvac{BMM!6$BC FF1Iq	!
B$QA>8C{{3S 12 ''#,C#a!*s2Aw.12AruuQC!I-..Cag,s);;KAA aA23i=DAq	!QR%a4AaC4j)A	$1Q3$(  4AaC4!A#:/A %fYGQ4)-E$+-Aq!Q1
 	}"))QUU1RaR!V9-qRaRy9:;1
BQBF)C
ABF)C CJBBbzBJJrN"=>> 	)"'')++*-((*,,046 (,		
  46!!CC	$4  	S!T]S!W$$ HHJLLS!E5!nGEJJLNN"EFFBJJu-s7{;<ME1~% < = 	= 

NArG   c           	      $    t        | ||||||      S )a  
    Solves the discrete-time algebraic Riccati equation (DARE).

    The DARE is defined as

    .. math::

          A^HXA - X - (A^HXB) (R + B^HXB)^{-1} (B^HXA) + Q = 0

    The limitations for a solution to exist are :

        * All eigenvalues of :math:`A` outside the unit disc, should be
          controllable.

        * The associated symplectic pencil (See Notes), should have
          eigenvalues sufficiently away from the unit circle.

    Moreover, if ``e`` and ``s`` are not both precisely ``None``, then the
    generalized version of DARE

    .. math::

          A^HXA - E^HXE - (A^HXB+S) (R+B^HXB)^{-1} (B^HXA+S^H) + Q = 0

    is solved. When omitted, ``e`` is assumed to be the identity and ``s``
    is assumed to be the zero matrix.

    The documentation is written assuming array arguments are of specified
    "core" shapes. However, array argument(s) of this function may have additional
    "batch" dimensions prepended to the core shape. In this case, the array is treated
    as a batch of lower-dimensional slices; see :ref:`linalg_batch` for details.

    Parameters
    ----------
    a : (M, M) array_like
        Square matrix
    b : (M, N) array_like
        Input
    q : (M, M) array_like
        Input
    r : (N, N) array_like
        Square matrix
    e : (M, M) array_like, optional
        Nonsingular square matrix
    s : (M, N) array_like, optional
        Input
    balanced : bool
        The boolean that indicates whether a balancing step is performed
        on the data. The default is set to True.

    Returns
    -------
    x : (M, M) ndarray
        Solution to the discrete algebraic Riccati equation.

    Raises
    ------
    LinAlgError
        For cases where the stable subspace of the pencil could not be
        isolated. See Notes section and the references for details.

    See Also
    --------
    solve_continuous_are : Solves the continuous algebraic Riccati equation

    Notes
    -----
    The equation is solved by forming the extended symplectic matrix pencil,
    as described in [1]_, :math:`H - \lambda J` given by the block matrices ::

           [  A   0   B ]             [ E   0   B ]
           [ -Q  E^H -S ] - \lambda * [ 0  A^H  0 ]
           [ S^H  0   R ]             [ 0 -B^H  0 ]

    and using a QZ decomposition method.

    In this algorithm, the fail conditions are linked to the symmetry
    of the product :math:`U_2 U_1^{-1}` and condition number of
    :math:`U_1`. Here, :math:`U` is the 2m-by-m matrix that holds the
    eigenvectors spanning the stable subspace with 2-m rows and partitioned
    into two m-row matrices. See [1]_ and [2]_ for more details.

    In order to improve the QZ decomposition accuracy, the pencil goes
    through a balancing step where the sum of absolute values of
    :math:`H` and :math:`J` rows/cols (after removing the diagonal entries)
    is balanced following the recipe given in [3]_. If the data has small
    numerical noise, balancing may amplify their effects and some clean up
    is required.

    .. versionadded:: 0.11.0

    References
    ----------
    .. [1]  P. van Dooren , "A Generalized Eigenvalue Approach For Solving
       Riccati Equations.", SIAM Journal on Scientific and Statistical
       Computing, Vol.2(2), :doi:`10.1137/0902010`

    .. [2] A.J. Laub, "A Schur Method for Solving Algebraic Riccati
       Equations.", Massachusetts Institute of Technology. Laboratory for
       Information and Decision Systems. LIDS-R ; 859. Available online :
       http://hdl.handle.net/1721.1/1301

    .. [3] P. Benner, "Symplectic Balancing of Hamiltonian Matrices", 2001,
       SIAM J. Sci. Comput., 2001, Vol.22(5), :doi:`10.1137/S1064827500367993`

    Examples
    --------
    Given `a`, `b`, `q`, and `r` solve for `x`:

    >>> import numpy as np
    >>> from scipy import linalg as la
    >>> a = np.array([[0, 1], [0, -1]])
    >>> b = np.array([[1, 0], [2, 1]])
    >>> q = np.array([[-4, -4], [-4, 7]])
    >>> r = np.array([[9, 3], [3, 1]])
    >>> x = la.solve_discrete_are(a, b, q, r)
    >>> x
    array([[-4., -4.],
           [-4.,  7.]])
    >>> R = la.solve(r + b.T.dot(x).dot(b), b.T.dot(x).dot(a))
    >>> np.allclose(a.T.dot(x).dot(a) - x - a.T.dot(x).dot(b).dot(R), -q)
    True

    )_solve_discrete_areru   s          rF   r   r   -  s    | q!Q1a::rG   c           
      
   t        | |||||d      \
  } }}}}}}}}	}
t        j                  d|z  |z   d|z  |z   f|	      }| |d |d |f<   ||d |d|z  d f<   | ||d|z  d |f<   |t        j                  |      n|j	                         j
                  ||d|z  |d|z  f<   |dn| ||d|z  d|z  d f<   |dn|j	                         j
                  |d|z  d d |f<   ||d|z  d d|z  d f<   t        j                  ||	      }|t        j                  |      n||d |d |f<   | j	                         j
                  ||d|z  |d|z  f<   |j	                         j
                   |d|z  d |d|z  f<   |r t        j                  |      t        j                  |      z   }t        j                  |d       t        |dd      \  }\  }}t        j                  |t        j                  |            st        j                  |      }t        j                  ||d|z   |d | z
  dz        }dt        j                  || |d|z  d  f   z  }|d d d f   t        j                  |      z  }||z  }||z  }t!        |d d | d f         \  }}|d d |d f   j	                         j
                  j#                  |d d d d|z  f         }|d d |d f   j	                         j
                  j#                  |d d d d|z  f         }|	t$        u rdnd	}t'        ||d
ddd|      \  }}}}}}|Dt!        t        j(                  |j#                  |d |d |f         ||d d |f   f            \  }}|d |d |f   }||d d |f   }t+        |      \  }}}dt-        |      z  t        j.                  d      k  rt1        d      t3        |j	                         j
                  t3        |j	                         j
                  |j	                         j
                  d      d      j	                         j
                  j#                  |j	                         j
                        }|r|d |d f   |d | z  z  }|j	                         j
                  j#                  |      }t5        |d      }||j	                         j
                  z
  }t        j6                  t        j.                  d      d|z  g      }t5        |d      |kD  rt1        d      ||j	                         j
                  z   dz  S )Ndarer   r(   rz   r	   r   r{   r*   rU   iucTFr   r   r   r   r   r   r   zMThe associated symplectic pencil has eigenvalues too close to the unit circle)r   r1   zerosra   r9   rO   r   r   r   r   r   r   r   r   r   r   r   r;   rR   r   r   r   r   r   r   r   r   r   )r   r   r   r?   rv   r    rw   r   r   r[   r   r   r   r   r]   r   r   q_of_qrr   r@   r   r   r   r   r   re   r   r   r   s                                rF   r   r     s.    /A561aAv/O+Aq!Q1aFG 	!A#a%1Qv.AAbqb"1"fIAbqb!A#$hK2Aa!eRaRiL#$9bffQi!&&(**Aa!eQqsUlO9R1"Aa!eQqSTkN	"qvvxzzAacdBQBhKAacdAaCDjM
av&AYq	AAbqb"1"fIffhjjAa!eQqsUlOffhjj[AacdAacEkN FF1Iq	!
B$QA>8C{{3S 12 ''#,C#a!*s2Aw.12AruuQC!I-..Cag,s);;KAA Aa!fIJGQ12##Aa!A#gJ/A12##Aa!A#gJ/A %fYGQ)-)-*/$+	-Aq!Q1 	}"))QUU1RaR!V9-qRaRy9:;1
BQBF)C
ABF)C CJBBbzBJJrN"=>> 	)"'')++*-((*,,046 (,		
  46!!CC	$4  	S!T]S!W$$ HHJLLS!E5!nGEJJLNN"EFFBJJu-s7{;<ME1~% 9 : 	: 

NArG   c           
         |j                         dvrt        d      t        j                  t	        | d            } t        j                  t	        |d            }t        j                  t	        |d            }t        j                  t	        |d            }t        j
                  |      rt        nt        }t        | ||f      D ]N  \  }}	t        j
                  |	      rt        }t        j                  |	j                   r>t        dd|    d       |j                  \  }
}|
| j                  d   k7  rt        d	      |
|j                  d   k7  rt        d
      ||j                  d   k7  rt        d      t        ||f      D ]a  \  }}	t        |	|	j                         j                  z
  d      t        j                  t        |	d            dz  kD  sQt        dd|    d       |dk(  rEt        |d      d   }|dk(  s%|t        j                  d      t        |d      z  k  rt        d      |duxs |du}|r'|t        j                  t	        |d            }t        j                  |j                   st        d      |
|j                  d   k7  rt        d      t        |d      d   }|dk(  s%|t        j                  d      t        |d      z  k  rt        d      t        j
                  |      rt        }|_t        j                  t	        |d            }|j                  |j                  k7  rt        d      t        j
                  |      rt        }| ||||||
|||f
S )a  
    A helper function to validate the arguments supplied to the
    Riccati equation solvers. Any discrepancy found in the input
    matrices leads to a ``ValueError`` exception.

    Essentially, it performs:

        - a check whether the input is free of NaN and Infs
        - a pass for the data through ``numpy.atleast_2d()``
        - squareness check of the relevant arrays
        - shape consistency check of the arrays
        - singularity check of the relevant arrays
        - symmetricity check of the relevant matrices
        - a check whether the regular or the generalized version is asked.

    This function is used by ``solve_continuous_are`` and
    ``solve_discrete_are``.

    Parameters
    ----------
    a, b, q, r, e, s : array_like
        Input data
    eq_type : str
        Accepted arguments are 'care' and 'dare'.

    Returns
    -------
    a, b, q, r, e, s : ndarray
        Regularized input data
    m, n : int
        shape of the problem
    r_or_c : type
        Data type of the problem, returns float or complex
    gen_or_not : bool
        Type of the equation, True for generalized and False for regular ARE.

    )r   ry   z;Equation type unknown. Only 'care' and 'dare' is understoodTrI   rK   aqrrM   r   z3Matrix a and b should have the same number of rows.rN   z3Matrix b and r should have the same number of cols.r	   d   r   z should be symmetric/hermitian.ry   F)
compute_uvrz   r   z!Matrix r is numerically singular.NzMatrix e should be square.z*Matrix a and e should have the same shape.z!Matrix e is numerically singular.z*Matrix b and s should have the same shape.)rp   rW   r1   rQ   r   rT   rU   rR   rS   rV   r7   r   r9   rO   r   r   )r   r   r   r?   rv   r    eq_typer[   r\   matr   r   min_svgeneralized_cases                 rF   r   r     s   N }}.. @ A 	A 	(>?A
(>?A
(>?A
(>?A *WFq!Qi(S??3Fxx#wuSzl2DEFF ) 77DAqAGGAJNOOAGGAJEFFAGGAJNOO q!f%Schhjll"A&DaL)A#)EEwtCyk1PQRR &
 &Q5)"-R<6BJJrN41:$==@AA }5=0FGA88QWW% !=>>AGGAJ !MNN u-b1F|v

2a(CC !DEEq! =0FGAww!''! !MNNq! aAq!Q6+;;;rG   )N)NNT)ry   )*__doc__rX   numpyr1   numpy.linalgr   r   r   r   r   scipy._lib._utilr   _basicr
   r   r   lapackr   _decomp_schurr   
_decomp_lur   
_decomp_qrr   
_decomp_qzr   _decompr   _special_matricesr   __all__r   r   r   rf   rj   r   r   rt   r   r   r    rG   rF   <module>r      s
   %   : : . ; ; $      ' )9 8Xx0Q6 1Q6h 8X&`$ '`$H +"4 8X&X 'Xv|=~ 8Xx8XNT OTn~;B 8Xx8XNV OVrh<rG   