
    ܛ7i                         d Z ddlmZ ddlmZ ddlmZ ddlZddl	m
Z
 ddlmZ g d	Zej                  d
        Zd Z e
d       e
d      ej                  d                      Z e
d       e
d      ej                  d                      Zy)zI
=======================
Distance-regular graphs
=======================
    )defaultdict)combinations_with_replacement)logN)not_implemented_for   )diameter)is_distance_regularis_strongly_regularintersection_arrayglobal_parametersc                 N    	 t        |        y# t        j                  $ r Y yw xY w)a  Returns True if the graph is distance regular, False otherwise.

    A connected graph G is distance-regular if for any nodes x,y
    and any integers i,j=0,1,...,d (where d is the graph
    diameter), the number of vertices at distance i from x and
    distance j from y depends only on i,j and the graph distance
    between x and y, independently of the choice of x and y.

    Parameters
    ----------
    G: Networkx graph (undirected)

    Returns
    -------
    bool
      True if the graph is Distance Regular, False otherwise

    Examples
    --------
    >>> G = nx.hypercube_graph(6)
    >>> nx.is_distance_regular(G)
    True

    See Also
    --------
    intersection_array, global_parameters

    Notes
    -----
    For undirected and simple graphs only

    References
    ----------
    .. [1] Brouwer, A. E.; Cohen, A. M.; and Neumaier, A.
        Distance-Regular Graphs. New York: Springer-Verlag, 1989.
    .. [2] Weisstein, Eric W. "Distance-Regular Graph."
        http://mathworld.wolfram.com/Distance-RegularGraph.html

    TF)r   nxNetworkXErrorGs    a/home/rose/Desktop/poly/venv/lib/python3.12/site-packages/networkx/algorithms/distance_regular.pyr	   r	      s+    R1 s    $$c                 >      fdt         dgz   dg|z         D        S )a  Returns global parameters for a given intersection array.

    Given a distance-regular graph G with diameter d and integers b_i,
    c_i,i = 0,....,d such that for any 2 vertices x,y in G at a distance
    i=d(x,y), there are exactly c_i neighbors of y at a distance of i-1 from x
    and b_i neighbors of y at a distance of i+1 from x.

    Thus, a distance regular graph has the global parameters,
    [[c_0,a_0,b_0],[c_1,a_1,b_1],......,[c_d,a_d,b_d]] for the
    intersection array  [b_0,b_1,.....b_{d-1};c_1,c_2,.....c_d]
    where a_i+b_i+c_i=k , k= degree of every vertex.

    Parameters
    ----------
    b : list

    c : list

    Returns
    -------
    iterable
       An iterable over three tuples.

    Examples
    --------
    >>> G = nx.dodecahedral_graph()
    >>> b, c = nx.intersection_array(G)
    >>> list(nx.global_parameters(b, c))
    [(0, 0, 3), (1, 0, 2), (1, 1, 1), (1, 1, 1), (2, 0, 1), (3, 0, 0)]

    References
    ----------
    .. [1] Weisstein, Eric W. "Global Parameters."
       From MathWorld--A Wolfram Web Resource.
       http://mathworld.wolfram.com/GlobalParameters.html

    See Also
    --------
    intersection_array
    c              3   @   K   | ]  \  }}|d    |z
  |z
  |f  yw)r   N ).0xybs      r   	<genexpr>z$global_parameters.<locals>.<genexpr>q   s+     C-BTQQ!q1a -Bs   r   )zip)r   cs   ` r   r   r   H   s%    R DSaS1#'-BCC    directed
multigraphc                 b   t        j                  |       rt        j                  |       st        j                  d      t	        t
              }i }i }d}dt        t        |       d      z  dz  }t        | d      D ]P  \  }}||   |vrEj                  t        j                  | |             j                         D ]  \  }}	|	||   |<    ||   |   t        |      }||kD  rt        j                  d      | |   }
|
D ]Q  }||   }||vs|j                  t        j                  | |             |j                         D ]  \  }}	|	||   |<    S t        fd|
D              }t        fd|
D              }|j                  |      |k7  s|j                  |      |k7  rt        j                  d      ||<   ||<   S t        |      D cg c]  }|j                  |d       c}t        |      D cg c]  }|j                  |d	z   d       c}fS c c}w c c}w )
a  Returns the intersection array of a distance-regular graph.

    Given a distance-regular graph G with integers b_i, c_i,i = 0,....,d
    such that for any 2 vertices x,y in G at a distance i=d(x,y), there
    are exactly c_i neighbors of y at a distance of i-1 from x and b_i
    neighbors of y at a distance of i+1 from x.

    A distance regular graph's intersection array is given by,
    [b_0,b_1,.....b_{d-1};c_1,c_2,.....c_d]

    Parameters
    ----------
    G: Networkx graph (undirected)

    Returns
    -------
    b,c: tuple of lists

    Examples
    --------
    >>> G = nx.icosahedral_graph()
    >>> nx.intersection_array(G)
    ([5, 2, 1], [1, 2, 5])

    References
    ----------
    .. [1] Weisstein, Eric W. "Intersection Array."
       From MathWorld--A Wolfram Web Resource.
       http://mathworld.wolfram.com/IntersectionArray.html

    See Also
    --------
    global_parameters
    zGraph is not distance regular.r            c              3   :   K   | ]  }|   d z
  k(  sd   ywr   Nr   r   nipl_us     r   r   z%intersection_array.<locals>.<genexpr>   !     55aDGq1u$45   c              3   :   K   | ]  }|   d z   k(  sd   ywr%   r   r&   s     r   r   z%intersection_array.<locals>.<genexpr>   r*   r+   zGraph is not distance regularr   )r   
is_regularis_connectedr   r   dictr   lenr   update"single_source_shortest_path_lengthitemsmaxsumgetrange)r   path_lengthbintcintdiammax_diameter_for_dr_graphsuvr   distancevnbrsr'   pl_nr   r   jr(   r)   s                   @@r   r   r   t   s   d ==2??1#5?@@d#KDD
 D"#c#a&!n"4!9-a311~D=KK==aCD#zz|8$,Aq!  , N14| ,,""#CDD!Aq>D}BAA!QGH#'::<KAx(0KN1% $0	  5555555588Aq>Q$((1a.A"5""#BCCQQA 4F "'t-A!Q-%*4[1[!a%	[1 -1s   H'H,c                 8    t        |       xr t        |       dk(  S )a  Returns True if and only if the given graph is strongly
    regular.

    An undirected graph is *strongly regular* if

    * it is regular,
    * each pair of adjacent vertices has the same number of neighbors in
      common,
    * each pair of nonadjacent vertices has the same number of neighbors
      in common.

    Each strongly regular graph is a distance-regular graph.
    Conversely, if a distance-regular graph has diameter two, then it is
    a strongly regular graph. For more information on distance-regular
    graphs, see :func:`is_distance_regular`.

    Parameters
    ----------
    G : NetworkX graph
        An undirected graph.

    Returns
    -------
    bool
        Whether `G` is strongly regular.

    Examples
    --------

    The cycle graph on five vertices is strongly regular. It is
    two-regular, each pair of adjacent vertices has no shared neighbors,
    and each pair of nonadjacent vertices has one shared neighbor::

        >>> G = nx.cycle_graph(5)
        >>> nx.is_strongly_regular(G)
        True

    r"   )r	   r   r   s    r   r
   r
      s    j q!6hqkQ&66r   )__doc__collectionsr   	itertoolsr   mathr   networkxr   networkx.utilsr   distance_measuresr   __all___dispatchabler	   r   r   r
   r   r   r   <module>rM      s    $ 3   . ' , ,^)DX Z \"`  # !`H Z \"27  # !27r   